
CS2204
Digital Logic

and
State Machine Design

VHDL Programming
Vijay Polavarapu

Fall 2013

VHDL PROGRAMMING 2

CS 2204 Digital Logic and State Machine Design
Fall 2013

Agenda
• Introduction
• VHDL Review (Page #3-19)
• Modeling styles in VHDL with examples (Page #20-28)
• Constructs in VHDL
Concurrent (Page #29-48)
Sequential (Page #49-55)

• Think Hardware? (Page #56-57)
• Examples of Behavioral coding (Page #58-63)
• Conclusions (Page #64)

Acknowledgements
• Prof. Haldun Hadimioglu
• John Wakerly, Cisco Systems, Stanford University
• System Design using VHDL-Charles H. Roth

VHDL PROGRAMMING 3

CS 2204 Digital Logic and State Machine Design
Fall 2013

VHDL
Revisited

VHDL PROGRAMMING 4

CS 2204 Digital Logic and State Machine Design
Fall 2013

Why HDLs?

• In software everything is sequential
• Sequence of statements is significant, since they are executed in

that order
• In hardware events are concurrent, so a software language cannot

be used for describing and simulating hardware.

VHDL PROGRAMMING 5

CS 2204 Digital Logic and State Machine Design
Fall 2013

1 -> 0 A 0 -> 1
X C

Y B

e.g. C = (not (X) and Y) or (not (X))

Case 1
A = not X
B = A and Y
C = A or B
Result:
C = 1

Case 2
B = A and Y
C = A or B
A = not X
Result:
C = 0

Case 3
C = A or B
A = not X
B = A and Y
Result:
C = 0

Different outputs with software programming languages
with ‘0’ initial values

VHDL PROGRAMMING 6

CS 2204 Digital Logic and State Machine Design
Fall 2013

Features of HDLs

• Concurrent Descriptions
• Synchronizing mechanisms between concurrent flows
• Event Scheduling
• Special object types and data types
• Hierarchy

VHDL PROGRAMMING 7

CS 2204 Digital Logic and State Machine Design
Fall 2013

Post layout simulation

HDL Implementation Design
Cycle

DESIGN ENTRY

Schematic , VHDL, Verilog,
etc.

Functional Simulation

SYNTHESIS

Test insertionGate level simulation

Implementation

MAP, PLACE ,
ROUTE

Static Timing Analysis

Static Timing Analysis

LIBRARIES

IP cores

VHDL PROGRAMMING 8

CS 2204 Digital Logic and State Machine Design
Fall 2013

Advantages of using Hardware Description Languages

• Designs can be described at various levels of abstractions

• Early Testing of Various Design Implementations
Due to fast synthesis, there is a scope for trying different implementations.

• Design Reuse
Technology independence, standardization, portability, ease of maintenance.

All these result in low risk, high convergence, fast time to market, more
money.

• Top-Down Approach and hierarchical designs for large projects

• Functional Simulation Early in the Design Flow

• Automatic Conversion of HDL Code to Gates
With user level control. Consistent quality. Fast.

VHDL PROGRAMMING 9

CS 2204 Digital Logic and State Machine Design
Fall 2013

A Brief History Of VHDL

• VHDL stands for Very high speed integrated circuit Hardware
Description Language

• Funded by the US Department of Defense in the 80's

• Originally meant for design standardisation, documentation,
simulation and ease of maintenance.

• Established as IEEE standard IEEE 1076 in 1987. An updated
standard, IEEE 1164 was adopted in 1993. In 1996 IEEE 1076.3
became a VHDL synthesis standard.

• Today VHDL is widely used across the industry for design
description, simulation and synthesis.

VHDL PROGRAMMING 10

CS 2204 Digital Logic and State Machine Design
Fall 2013

About VHDL

• VHDL is not case sensitive
• VHDL is a free form language. You can write the whole program on

a single line.

-- This is a VHDL comment
entity my_exor is -- one more comment
begin
...
end my_exor;

VHDL PROGRAMMING 11

CS 2204 Digital Logic and State Machine Design
Fall 2013

-- This is my first VHDL program

library IEEE;
use IEEE.std_logic_1164.all;

entity my_exor is
port (ip1 : in std_logic;

ip2 : in std_logic;
op1 : out std_logic

);
end my_exor;

entity declaration - describes the
boundaries of the object.
It defines the names of the ports, their
mode and their type.

my EXOR gate

VHDL PROGRAMMING 12

CS 2204 Digital Logic and State Machine Design
Fall 2013

library IEEE;
use IEEE.std_logic_1164.all;

entity my_exor is
port (ip1 : in std_logic;

ip2 : in std_logic;
op1 : out std_logic

);
end my_exor;

entity - defines the
interface.

Mode of the port :
Direction of flow.
It can be
in, out or inout

my EXOR gate

VHDL PROGRAMMING 13

CS 2204 Digital Logic and State Machine Design
Fall 2013

library IEEE;
use IEEE.std_logic_1164.all;

entity my_exor is
port (ip1 : in std_logic;

ip2 : in std_logic;
op1 : out std_logic

);
end my_exor;

entity - defines the
interface.

Mode of the port :
It can be
in, out or inout

std_logic is the type of the
port.
Standard logic is defined
by the standard
IEEE 1164.
It is defined in the IEEE
library.
Any node of type std_logic
can take 9 different values.
‘0’ , ’1’ , ’H’ , ’L’ , ’Z’ ,
’U’ , ’X’ , ’W’ , ’-’

my EXOR gate

VHDL PROGRAMMING 14

CS 2204 Digital Logic and State Machine Design
Fall 2013

library IEEE;
use IEEE.std_logic_1164.all;

entity my_exor is
port (ip1 : in std_logic;

ip2 : in std_logic;
op1 : out std_logic

);
end my_exor;

Library : Collection of design
elements, type declarations, sub
programs, etc.

my EXOR gate

VHDL PROGRAMMING 15

CS 2204 Digital Logic and State Machine Design
Fall 2013

library IEEE;
use IEEE.std_logic_1164.all;

entity my_exor is
port (ip1 : in std_logic;

ip2 : in std_logic;
op1 : out std_logic

);
end my_exor;

architecture my_exor_beh of my_exor is
begin
op1 <= (ip1 and (not ip2)) or

(ip2 and (not ip1));
end my_exor_beh;

Library : Collection of design
elements, type declarations,sub
programs, etc.

entity - defines the
interface.

Mode of the port :
It can be
in, out or inout

std_logic is the type of the port
It is defined in the IEEE library.
Any node of type std_logic can take
9 different values.
‘0’ , ’1’ , ’H’ , ’L’ , ’Z’ , ’U’ , ’X’ , ’W’ , ’-’

The architecture describes the
behaviour (function),
interconnections and the
relationship between different
inputs and outputs of the entity.

my EXOR gate

VHDL PROGRAMMING 16

CS 2204 Digital Logic and State Machine Design
Fall 2013

library IEEE;
use IEEE.std_logic_1164.all;

entity my_exor is
port (ip1 : in std_logic;

ip2 : in std_logic;
op1 : out std_logic

);
end my_exor;

architecture my_exor_beh of my_exor is
begin
op1 <= (ip1 and (not ip2)) or

(ip2 and (not ip1));
end my_exor_beh;

configuration my_exor_C of my_exor is
for my_exor_beh
end for;

end my_exor_C;

Library : Collection of design
elements, type declarations,
sub programs, etc.

entity - defines the
interface.

Mode of the port :
It can be
in, out or inout

std_logic is the type of the port
It is defined in the IEEE library.
Any node of type std_logic can take
9 different value.
‘0’ , ’1’ , ’H’ , ’L’ , ’Z’ , ’U’ , ’X’ , ’W’ , ’-’

The architecture describes the
behaviour(function), interconnections
and the relationship between different
inputsand outputs.

The configuration is optional.
It defines the entity architecture
bindings.
More about configurations later.

my EXOR gate

VHDL PROGRAMMING 17

CS 2204 Digital Logic and State Machine Design
Fall 2013

architecture my_exor_beh of my_exor is
signal temp1 : std_logic;
signal temp2 : std_logic;

begin
......

end my_exor_beh;

Internal connections are made using signals.
Signals are defined inside the architecture.

VHDL PROGRAMMING 18

CS 2204 Digital Logic and State Machine Design
Fall 2013

library IEEE;
use IEEE.std_logic_1164.all;

entity my_exor is
port (ip1 : in std_logic;

ip2 : in std_logic;
op1 : out std_logic

);
end my_exor;

architecture exor_w_sig of my_exor is
signal temp1, temp2 : std_logic;

begin
temp1 <= ip1 and (not ip2);
temp2 <= ip2 and (not ip1);
op1 <= temp1 or temp2;

end exor_w_sig;

configuration my_exor_C of my_exor is
for exor_w_sig
end for;

end my_exor_C;

my EXOR with internal signals

VHDL PROGRAMMING 19

CS 2204 Digital Logic and State Machine Design
Fall 2013

SUMMARY
Introduction to:

• VHDL flow

• Comments

• Library declaration

• Entity declaration (ports, modes, std_logic type)

• Architecture

• Signal declarations

• Signal assignments

• Component declaration and instantiation

• Configuration statement

VHDL PROGRAMMING 20

CS 2204 Digital Logic and State Machine Design
Fall 2013

Design Hierarchy Levels (Modeling Styles)

• Structural
 Define explicit components and the connections between

them.

• Dataflow
Most are like assigning expressions to signals

• Behavioral
Write an algorithm that describes the circuit’s output

VHDL PROGRAMMING 21

CS 2204 Digital Logic and State Machine Design
Fall 2013

Dataflow Level

• Dataflow description
 The detail is less with data dependencies described, not

the components and connections
 Includes “when” and “select” (case) statements

VHDL PROGRAMMING 22

CS 2204 Digital Logic and State Machine Design
Fall 2013

Full Adder - Data flow

VHDL PROGRAMMING 23

CS 2204 Digital Logic and State Machine Design
Fall 2013

Structural Level

• A structural description is like the schematic, describing the
components and their interconnections precisely

 Includes concurrent statements
• A component statement is a concurrent statement

VHDL PROGRAMMING 24

CS 2204 Digital Logic and State Machine Design
Fall 2013

4-bit Ripple-Carry Adder - Structural Description

VHDL PROGRAMMING 25

CS 2204 Digital Logic and State Machine Design
Fall 2013

4-bit Ripple-Carry Adder - Structural Description cntd.

VHDL PROGRAMMING 26

CS 2204 Digital Logic and State Machine Design
Fall 2013

Behavioral Level

• Behavioral description
May not be synthesizable or may lead to a very large

circuit
 Primarily used for simulation
 Normally uses VHDL “processes”

VHDL PROGRAMMING 27

CS 2204 Digital Logic and State Machine Design
Fall 2013

VHDL PROGRAMMING 28

CS 2204 Digital Logic and State Machine Design
Fall 2013

Simulation results (temp. signals also shown)

HDL Synthesis Report
Macro Statistics
Adders/Subtractors : 2
5-bit adder : 2

Comparators : 1
5-bit comparator greater : 1

A strong reason to think of hardware being designed,
while writing VHDL behavioral code.

VHDL PROGRAMMING 29

CS 2204 Digital Logic and State Machine Design
Fall 2013

Constructs in VHDL

VHDL PROGRAMMING 30

CS 2204 Digital Logic and State Machine Design
Fall 2013

Concurrent Statements

• All concurrent statements in an architecture are executed
simultaneously.

• Concurrent statements are used to express parallel activity
as is the case with any digital circuit.

• Concurrent statements are executed with no predefined
order by the simulator . So the order in which the code is
written does not have any effect on its function.

• They can be used for behavioral and structural and data
flow descriptions.

VHDL PROGRAMMING 31

CS 2204 Digital Logic and State Machine Design
Fall 2013

• Process is a concurrent statement in which sequential
statements are allowed.

Concurrent statements contd.

• All processes in an architecture are executed
simultaneously.

• Concurrent statements are executed by the simulator
when one of the signals in its sensitivity list changes .
This is called occurrence of an ‘event’.
eg : c <= a or b;
is executed when either signal ‘a’ or signal ‘b’ changes.
process(clk , reset) ...
is executed when either ‘clk’ or ‘reset’ changes

• Signals are concurrent whereas variables are sequential
objects.

VHDL PROGRAMMING 32

CS 2204 Digital Logic and State Machine Design
Fall 2013

• The ‘when‘ statement
This type of assignment has one target but

multiple condition expressions.
This statement assigns value based on the

priority of the condition.
syntax

Conditional signal assignment

sig_name <= exp1 when condition1 else
exp2 when condition2 else
exp3;

VHDL PROGRAMMING 33

CS 2204 Digital Logic and State Machine Design
Fall 2013

entity my_nand is
port (a, b : in std_logic;

c : out std_logic);
end my_nand;
architecture beh of my_nand is
begin

c <= ‘0’ when a = ‘1’ and b = ‘1’ else
‘1’ ;

end beh;

entity tri_state is
port (a, en : in std_logic;

b : out std_logic);
end tri_state;
architecture beh of tri_state is
begin

b <= a when en = ‘1’ else
‘Z’;

end beh;

VHDL PROGRAMMING 34

CS 2204 Digital Logic and State Machine Design
Fall 2013

architecture try_A of try is
begin

Y <= i1 when s1 = ‘0’ and s0 = ‘0’ else
i2 when s1 = ‘0’ and s0 = ‘1’ else
i3 when s1 = ‘1’ and s0 = ‘0’ else
i4 when s1 = ‘1’ and s0 = ‘1’ else
‘0’ ;

end try_A;

example

Incomplete specification is not allowed

VHDL PROGRAMMING 35

CS 2204 Digital Logic and State Machine Design
Fall 2013

example

architecture when_grant of bus_grant is
signal …

begin
data_bus <= a and b when e1 = ‘1’
else

e or f when a = b else
g & h when e3 = ‘1’

else
(others => ‘Z’);

end when_grant;

VHDL PROGRAMMING 36

CS 2204 Digital Logic and State Machine Design
Fall 2013

Selective signal assignment

The with statement

• This statement is similar to the case statement
• syntax
with expression select
target <= expression1 when choice1

expression2 when choice2
expressionN when choiceN;

• all possible choices must be enumerated
• when others choice takes care of all the

remaining alternatives.

VHDL PROGRAMMING 37

CS 2204 Digital Logic and State Machine Design
Fall 2013

• Each choice in the with statement should be unique

Difference between with and when statements

• Compared to the ‘when’ statement, in the ‘with’
statement, choice is limited to the choices provided by
the with ‘expression’, whereas for the ‘when’ statement
each choice itself can be a separate expression.

• The when statement is prioritized (since each choice can
be a different expression, more than one condition can
be true at the same time, thus necessitating a priority
based assignment) whereas the with statement does not
have any priority (since choices are mutually exclusive)

VHDL PROGRAMMING 38

CS 2204 Digital Logic and State Machine Design
Fall 2013

entity my_mux is
port (a, b, c, d : in std_logic;

sel0, sel1 : in std_logic;
e : out std_logic);

end my_mux;

architecture my_mux_A of my_mux is
signal sel: std_logic_vector(1 downto 0);

begin
sel <= sel1 & sel0;
with sel select
e <= a when “00”

b when “01”
c when “10”
d when others;

end my_mux_A;

VHDL PROGRAMMING 39

CS 2204 Digital Logic and State Machine Design
Fall 2013

• A component represents an entity architecture pair.

Component Instantiation

• Component allows hierarchical design of complex
circuits.

• A component instantiation statement defines a part
lower in the hierarchy of the design entity in which it
appears. It associates ports of the component with the
signals of the entity. It assigns values to the generics of
the component.

• A component has to be declared in either a package or
in the declaration part of the architecture prior to its
instantiation.

VHDL PROGRAMMING 40

CS 2204 Digital Logic and State Machine Design
Fall 2013

• Syntax(Declaration)
component component_name

[generic list]
[port list]

end component;

Component Declaration and Instantiation

• Syntax(Instantiation)
label:component_name
[generic map]
port map;

VHDL PROGRAMMING 41

CS 2204 Digital Logic and State Machine Design
Fall 2013

entity my_and is
port(a : in std_logic;

b : in std_logic;
c : out std_logic);

end my_and;

architecture my_and_A of my_and is
component and2

generic (tpd: time := 2 ns);
port (x : in std_logic;

y : in std_logic;
z : out std_logic);

end component;
signal temp : std_logic;

begin
c <= temp;
-- component instantiation here

end my_and_A;

U1: my_and
generic map (tpd => 5 ns)
port map (x => a,

y => b,
z => temp);

U2: my_and
generic map (tpd => 2 ns)
port map (x => a,

y => b,
z => temp);

VHDL PROGRAMMING 42

CS 2204 Digital Logic and State Machine Design
Fall 2013

architecture exor_A of exor is
component my_or

port (a : in std_logic;
b : in std_logic;
y : out std_logic
);

end component;
component my_and

port (a : in std_logic;
b : in std_logic;
y : out std_logic

);
end component;
signal a_n, b_n : std_logic;
signal y1, y2, y3 : std_logic;

begin
.

end exor_A;

u1 : my_or
port map (y2,

y3,
y1);

u2 : my_and
port map (a_n,

b,
y2);

u3 : my_and
port map (a,

b_n,
y3);

a_n <= not a ;
b_n <= not b ;

VHDL PROGRAMMING 43

CS 2204 Digital Logic and State Machine Design
Fall 2013

Positional association

Named Association
U1:my_and
generic map (tpd => 5 ns)
port map (x => a,

y => b,
z => temp);

U1: my_and
generic map(5 ns)
port map(a, b, temp);

Component Instantiation contd.

The formal and the actual can have the same name

VHDL PROGRAMMING 44

CS 2204 Digital Logic and State Machine Design
Fall 2013

Component Instantiation contd.

• Named association is preferred because it makes the
code more readable and pins can be specified in any
order whereas in positional association order should
be maintained as defined in the component and all the
pins need to be connected .

• Multiple instantiation of the same component should
have different labels.

VHDL PROGRAMMING 45

CS 2204 Digital Logic and State Machine Design
Fall 2013

Process statement

• The process statement is a concurrent statement ,
which delineates a part of an architecture where
sequential statements are executed.

• Syntax
label: process [(sensitivity list)]
declarations

begin
sequential statements

end process;

VHDL PROGRAMMING 46

CS 2204 Digital Logic and State Machine Design
Fall 2013

Process statement

• All processes in an architecture are executed
concurrently with all other concurrent statements.

• Process is synchronized with the other concurrent
statements using the sensitivity list or a wait statement.

• Process should either have sensitivity list or an explicit
wait statement. Both should not be present in the same
process statement.

• The order of execution of statements is the order in
which the statements appear in the process

• All the statements in the process are executed
continuously in a loop .

VHDL PROGRAMMING 47

CS 2204 Digital Logic and State Machine Design
Fall 2013

Process contd.

• The simulator runs a process when any one of the
signals in the sensitivity list changes. For a wait
statement, the simulator executes the process after the
wait is over.

• The simulator takes 0 simulation time to execute all the
statements in the process. (provided there is no wait)

VHDL PROGRAMMING 48

CS 2204 Digital Logic and State Machine Design
Fall 2013

process (clk,reset)
begin

if (reset = ‘1’) then
A <= ‘0’;

elsif (clk’event and clk = ‘1’) then
A <= ‘B’;

end if;
end process;

process
begin

if (reset = ‘1’) then
A <= ‘0’ ;

elsif (clk’event and clk = ‘1’) then
A <= ‘B’;

end if;
wait on reset, clk;

end process;

VHDL PROGRAMMING 49

CS 2204 Digital Logic and State Machine Design
Fall 2013

• Sequential statements are statements which are
analyzed serially one after the other. The final output
depends on the order of the statements, unlike
concurrent statements where the order is
inconsequential.

Sequential Statements

• Sequential statements are allowed only inside process
and subprograms (function and procedure)

• Process and subprograms can have only sequential
statements within them.

• Only sequential statements can use variables.

• The Process statement is the primary concurrent VHDL
statement used to describe sequential behaviour.

VHDL PROGRAMMING 50

CS 2204 Digital Logic and State Machine Design
Fall 2013

• Sequential statements can be used to generate
Combinational logic
Sequential logic

Sequential Statements contd.

• Clocked process
It is easily possible to infer flip-flops using if

statements and ‘event attribute.
• Combinatorial process
generates purely combinatorial logic.
All the inputs must be present in the sensitivity

list. Otherwise the simulation and synthesis
results will not match.

VHDL PROGRAMMING 51

CS 2204 Digital Logic and State Machine Design
Fall 2013

• Syntax
if condition1 then

statements
[elsif condition2 then

statements]
[else

statements]
end if;

• An if statement selects one or none of a sequence of
events to execute . The choice depends on one or more
conditions.

Priority

The if statement

VHDL PROGRAMMING 52

CS 2204 Digital Logic and State Machine Design
Fall 2013

• If statements can be nested.

if sel = ‘1’ then
c <= a;

else
c <= b;

end if;

if (sel = “00”) then
o <= a;

elsif sel = “01” then
x <= b;

elsif (color = red) then
y <= c;

else
o <= d;

end if;

The if statement contd.

• If statement generates a priority structure

• If corresponds to when else concurrent statement.

VHDL PROGRAMMING 53

CS 2204 Digital Logic and State Machine Design
Fall 2013

The case statement - syntax
case expression is

when choice 1 =>
statements

when choice 3 to 5 =>
statements

when choice 8 downto 6 =>
statements

when choice 9 | 13 | 17 =>
statements

when others =>
statements

end case;

VHDL PROGRAMMING 54

CS 2204 Digital Logic and State Machine Design
Fall 2013

The case statement

• The case statement selects, for execution one of a number
of alternative sequences of statements .

• Corresponds to with select in concurrent statements .

• Case statement does not result in prioritized logic structure
unlike the if statement.

VHDL PROGRAMMING 55

CS 2204 Digital Logic and State Machine Design
Fall 2013

process(sel, a, b, c, d)
begin
case sel is
when “00” =>

dout <= a;
when “01” =>

dout <= b;
when “10” =>

dout <= c;
when “11” =>

dout <= d;
when others =>

null;
end case;

end process;

process (count)
begin

case count is
when 0 =>
dout <= “00”;

when 1 to 15 =>
dout <= “01”;

when 16 to 255 =>
dout <= “10”;

when others =>
null;

end case;
end process;

The case statement contd.

VHDL PROGRAMMING 56

CS 2204 Digital Logic and State Machine Design
Fall 2013

Think Hardware! (Mutually exclusive conditions)

This priority is useful for timings.

myif_pro: process (s, c, d, e, f)
begin

if s = "00" then
pout <= c;

elsif s = "01" then
pout <= d;

elsif s = "10" then
pout <= e;

else
pout <= f;

end if;
end process myif_pro;

VHDL PROGRAMMING 57

CS 2204 Digital Logic and State Machine Design
Fall 2013

Think Hardware! Use a case for mutually
exclusive things
mycase_pro: process (s, c, d, e, f)

begin
case s is
when "00" =>

pout <= c;
when "01" =>

pout <= d;
when "10" =>

pout <= e;
when others =>

pout <= f;
end if;

end process mycase_pro;

C

D

E

F

S

POUT

There is no priority with case.

VHDL PROGRAMMING 58

CS 2204 Digital Logic and State Machine Design
Fall 2013

BEHAVIORAL (Processes using signals)

Sig2 = 1

Sig1 = 2 + 3 = 5

Sig3 = 2

Sum = 1 + 2 + 3 = 6

VHDL PROGRAMMING 59

CS 2204 Digital Logic and State Machine Design
Fall 2013

BEHAVIORAL (Processes using Variables)

var1 = 2 + 3 = 5

var2 = 5

var3 = 5

Sum = 5 + 5 + 5 = 15

VHDL PROGRAMMING 60

CS 2204 Digital Logic and State Machine Design
Fall 2013

Behavioral Description of a 3-to-8 Decoder

Except for different
syntax, approach is
not all that different
from the dataflow
version

VHDL PROGRAMMING 61

CS 2204 Digital Logic and State Machine Design
Fall 2013

A Different Behavioral Description of a 3-to-8
Decoder

May not be synthesizable,
or may have a slow or inefficient realization.
But just fine for simulation and verification.

VHDL PROGRAMMING 62

CS 2204 Digital Logic and State Machine Design
Fall 2013

74x148 behavioral description
(8 to 3 line cascadable Priority Encoder)

VHDL PROGRAMMING 63

CS 2204 Digital Logic and State Machine Design
Fall 2013

type conversion

--EI - Enable I/P
--EO - O/P Enable
--I - I/P(data to be encoded)
--A - O/P

VHDL PROGRAMMING 64

CS 2204 Digital Logic and State Machine Design
Fall 2013

CONCLUSION

• Many VHDL constructs, although useful for simulation
and other stages in the design process, are not relevant
to synthesis. A sub-set of VHDL only can be used for
synthesis.

• A construct may be fully supported, ignored, or
unsupported.

• Ignored means that the construct will be allowed in the
VHDL file but will be ignored by the synthesis tool.

• Unsupported means that the construct is not allowed
and the code will not be accepted for synthesis.

• See the documentation of tools for exact details.

